TOWARDS THE ULTIMATE WIND TIME-SERIES: LONG-TERM AND HIGH-RESOLUTION, ALL TOGETHER

Pau Casso Torralba Webminar November 2024 Vortex FdC

OUTLINE Motivation Methodology Validation & Results Key Takeaways

Goal is to create a long-term dataset that includes the benefits of microscale modeling without the excessive computational cost.

Mesoscale+Microscale

- 10min
- Cover a long period (decades)
- Reasonable cost
- Long Term Values and Interannual Variability
- Focus on wind distribution accuracy
- Includes local effects
- Turbulence Intensity

Lat=<LAT> Lon=<LON> Hub-Height=<HH> Timezone=<TZ> (file requested on <DATETIME> UTCØ) VORTEX (www.vortexfdc.com) - Computed at 333 m resolution based on ERA5 data

YYYYMMDD	ННММ	M(m/s)	D(deg)	SD(m/s)	T(C)	De(k/m3)	PRE(hPa)	RiNumber	RH(%)	RMOL(1/m)	VertM(m/s)
20030101	ØØØØ	7.3Ø	32.4	Ø.16	1.9	1.24	975.7	Ø.14	59.3	Ø.Ø226	Ø.Ø2
20030101	ØØ 1 Ø	6.68	37.2	Ø.51	1.9	1.24	975.9	-Ø.Ø6	59.4	Ø.Ø365	Ø.Ø2
20030101	ØØ2Ø	7.17	37.6	Ø.36	1.Ø	1.24	975.9	Ø.64	59.1	Ø.Ø479	-Ø.Ø8
20030101	ØØ3Ø	7.24	42.2	Ø.49	2.Ø	1.24	975.9	Ø.28	58.8	Ø.Ø513	Ø.35
20030101	ØØ4Ø	7.13	37.4	Ø.42	1.5	1.24	975.8	-Ø.Ø7	58.7	Ø.Ø489	-Ø.Ø3
20030101	ØØ5Ø	7.95	39.Ø	Ø.34	Ø.8	1.24	975.8	Ø.64	58.7	Ø.Ø429	-Ø.16
20030101	Ø1ØØ	7.89	39.6	Ø.47	1.2	1.24	975.8	Ø.36	58.9	Ø.Ø295	-Ø.2Ø
20030101	Ø11Ø	8.22	38.8	Ø.15	1.6	1.24	975.7	Ø.12	59.2	Ø.Ø194	Ø.18
20030101	Ø12Ø	8.34	35.5	Ø.42	1.Ø	1.24	975.8	Ø.82	59.4	Ø.Ø135	-Ø.Ø2
20030101	Ø13Ø	9.23	37.8	Ø.5Ø	1.5	1.24	975.7	Ø.41	59.5	Ø.Ø1Ø3	Ø.ØØ
20030101	Ø14Ø	9.66	32.3	Ø.3Ø	1.7	1.24	975.6	Ø.39	59.7	Ø.ØØ88	-Ø.Ø3

(...)

OUTLINE Motivation Methodology Validation & Results Key Takeaways

Atmospheric simulations using the Weather Research and Forecasting Model (WRF). Dynamical downscaling of the reanalysis.

Baseline WRF simulation

- Resolution: 300m
- Period: 20 years
- Explicitly solving microscale: NO
- Boundary conditions: ERA5
- Output frequency: 10min
- Affordable

WRF-LES simulation

• Resolution: 100m • Period: 6 months • Explicitly solving microscale: YES • Boundary conditions: ERA5 • Output frequency: 10min • Expensive

The LES Enhancement has three main targets:

- $1 \rightarrow$ Wind Distribution
- $2 \rightarrow Turbulence$
- $3 \rightarrow$ Sub-Hourly Variability

MLA is used to trespass LES modeling accuracy & microscale description into the long-term WRF baseline. Information from all meteorological variables is used.

Example of series daily variability:

Wind Speed for one day

14 20.0 Measurements TIMES 12 17.5 15.0 (s/ш) 12.5 Wind Speed 6 7.5 5.0 2 2.5 0 time 0

5/14

Model Wind Speed (m/s) for several heights

Validation & Results Key Takeaways

OUTLINE **Motivation** Methodology

TIMES Validation

6/14

272 Sites Worldwide

Benefits of the long-term TIMES dataset compared to reanalysis:

- It is microscale: better accuracy, describes the local effects at the site
- It is 10-min
- With multiple heights
- It contains many variables

	World (272 sites
Mean Wind Speed Absolute Bias (%)	5.71 ± 4.72
Mean Wind Speed Bias (%)	0.003 ± 7.393
10-min Wind Speed RMSE (m/s)	2.04 ± 0.47
10-min Wind Speed Correlation	0.70 ± 0.09

Metrics by Terrain Complexity World (272 sites)

Terrain Complexity is a metric derived from the range and maximum values of terrain height and slope for the surrounding area of the point.

Benefits of the long-term TIMES dataset compared to reanalysis:

- It is microscale
- It is 10-min: realistic texture, extreme wind speeds
- With multiple heights
- It contains many variables

Vref50: Maximum Wind Speed for 50-year return period Validated at 30 points in the world (with more than 8 years of data)

Vref (30 points)

(%)	11.09 ± 6.72
(%)	-6.98 ± 11.05

Benefits of the long-term TIMES dataset compared to reanalysis:

- It is microscale
- It is 10-min
- With multiple heights: easier vertical extrapolation, shear and veer analysis
- It contains many variables

TIMES Validation

Mean Vertical Profiles

Wind Speed and Shear

Wind Speed Vertical Structure

Black: Full mean Colors: Profile for each hour

10/14

Wind Direction and Veer

150 175 200 225 250 Wind Direction (degrees)

-0.4 -0.2 0.0 Bulk Wind Direction Veer (deg/m)

Benefits of the long-term TIMES dataset compared to reanalysis:

- It is microscale
- It is 10-min
- With multiple heights
- It contains many variables: can study long-term turbulence intensity, atmospheric stábility, etc.

TIMES Validation

Turbulence Intensity Curve (101 points)

e Bias (%)	13.96 ± 8.17
elation	0.51 ± 0.36
(% of TI)	1.70 ± 0.80

Some Plots

- Daily evolution of model variables at a glance.
- We can check the consistency and physicality of results.

X-axis: 10-min timestamps for one day

Validation & Results Key Takeaways

OUTLINE **Motivation** Methodology

Key Takeaways

- Long-term 10-min high resolution time series are useful for a complete wind resource assessment study at a site.
- The methodology of using a short WRF-LES simulation to enhance a baseline WRF simulation has been proven to be robust and accurate.

- A calibration tool is available: TIMES-Remodeling.
- Allows the use of measurements to calibrate the long-term modeled dataset.
- Based on our own MCP focusing on the time-domain.
- Wind speed, wind direction and turbulence are calibrated.

Thank you for your attention! pau.casso@vortexfdc.com

